Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes.
نویسندگان
چکیده
Although both SLC30A8 rs13266634 single nucleotide polymorphism and plasma zinc concentrations have been associated with impaired glucose regulation (IGR) and type 2 diabetes (T2D), their interactions for IGR and T2D remain unclear. Therefore, to assess zinc-SLC30A8 interactions, we performed a case-control study in 1,796 participants: 218 newly diagnosed IGR patients, 785 newly diagnosed T2D patients, and 793 individuals with normal glucose tolerance. After adjustment for age, sex, BMI, family history of diabetes, and hypertension, the multivariable odds ratio (OR) of T2D associated with a 10 µg/dL higher plasma zinc level was 0.87 (95% CI 0.85-0.90). Meanwhile, the OR of SLC30A8 rs13266634 homozygous genotypes CC compared with TT was 1.53 (1.11-2.09) for T2D. Similar associations were found in IGR and IGR&T2D groups. Each 10 µg/dL increment of plasma zinc was associated with 22% (OR 0.78 [0.72-0.85]) lower odds of T2D in TT genotype carriers, 17% (0.83 [0.80-0.87]) lower odds in CT genotype carriers, and 7% (0.93 [0.90-0.97]) lower odds in CC genotype carriers (P for interaction = 0.01). Our study suggested that the C allele of rs13266634 was associated with higher odds of T2D, and higher plasma zinc was associated with lower odds. The inverse association of plasma zinc concentrations with T2D was modified by SLC30A8 rs13266634. Further studies are warranted to confirm our findings and clarify the mechanisms underlying the interaction between plasma zinc and the SLC30A8 gene in relation to T2D.
منابع مشابه
Interactions between Zinc Transporter-8 Gene (SLC30A8) and Plasma Zinc Concentrations for Impaired Glucose Regulation and Type 2 Diabetes Running title: Zinc-SLC30A8 Interaction for T2D
d Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, USA. *Correspondence to: Dr. Liegang Liu, Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, W...
متن کاملDeletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion.
The Slc30a8 gene encodes the islet-specific zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Polymorphic variants in amino acid residue 325 of human ZnT-8 are associated with altered susceptibility to Type 2 diabetes and ZnT-8 autoantibody epitope specificity changes in Type 1 diabetes. To assess the physiological importance of ZnT-8, mice carrying a Slc30a8 exon 3 del...
متن کاملThe Physiological Effects of Deleting the Mouse Slc30a8 Gene Encoding Zinc Transporter-8 Are Influenced by Gender and Genetic Background
OBJECTIVE The SLC30A8 gene encodes the islet-specific transporter ZnT-8, which is hypothesized to provide zinc for insulin-crystal formation. A polymorphic variant in SLC30A8 is associated with altered susceptibility to type 2 diabetes. Several groups have examined the effect of global Slc30a8 gene deletion but the results have been highly variable, perhaps due to the mixed 129SvEv/C57BL/6J gen...
متن کاملZinc-Associated Variant in SLC30A8 Gene Interacts With Gestational Weight Gain on Postpartum Glycemic Changes: A Longitudinal Study in Women With Prior Gestational Diabetes Mellitus
Zinc transporter 8 genetic variant SLC30A8 has been associated with postpartum risk of type 2 diabetes among women with gestational diabetes mellitus (GDM). Gestational weight gain is one of the strongest risk factors for postpartum hyperglycemia. We assessed the interaction between type 2 diabetes-associated SLC30A8 rs13266634 and gestational weight gain on 1-5 years of postpartum glycemic cha...
متن کاملZinc–rs13266634 and the Arrival of Diabetes Pharmacogenetics: The “Zinc Mystique”
Advances in our understanding of the genetics of type 2 diabetes have been astronomical over the past decade with more than 100 single nucleotide polymorphisms (SNPs) associated with modest increases in diabetes risk and differences in related traits such as fasting glucose (1,2). However, these SNPs have contributed more to elucidating biologic pathways than predicting diabetes risk (3). Nonet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 63 5 شماره
صفحات -
تاریخ انتشار 2014